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Definição
Seja V um R-espaço vetorial. Um produto interno sobre V é uma função

⟨ , ⟩ : V × V −→ R

(u, v) 7−→ ⟨u, v⟩

ou seja, que associa a cada par de vetores (u, v) ∈ V × V um número
⟨u, v⟩ ∈ R, que satisfaz os seguintes axiomas:

1 ⟨u, v⟩ = ⟨v , u⟩, ∀ u, v ∈ V (Axi. de Comutatividade ou Simetria)
2 ⟨u + v , w⟩ = ⟨u, w⟩ + ⟨v , w⟩, ∀ u, v , w ∈ V (Axi. de Aditividade)
3 ⟨αu, v⟩ = α⟨u, v⟩, ∀ u, v ∈ V e ∀ α ∈ R (Axi. de Homogeneidade)
4 ⟨u, u⟩ ≥ 0, ∀ u ∈ V , e ⟨u, u⟩ = 0 se, e somente se, u = 0. (Axioma

de Positividade)

Um R-espaço vetorial com produto interno é chamado de espaço euclidi-
ano.
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Exemplo
Sejam V = R2 e u = (x1, x2), v = (y1, y2) ∈ R2, a função

⟨u, v⟩ =
2∑

i=1
xiyi = x1y1 + x2y2

define um produto interno sobre R2. Este é chamado de produto interno
canônico sobre R2.

De fato, verifiquemos que a função satisfaz os axiomas de produto interno:

1) Para todo u = (x1, x2), v = (y1, y2) ∈ R2, temos

⟨u, v⟩ = ⟨(x1, x2), (y1, y2)⟩ = x1y1 + x2y2

= y1x1 + y2x2 = ⟨(y1, y2), (x1, x2)⟩
= ⟨v , u⟩
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2) Para todo u = (x1, x2), v = (y1, y2), w = (z1, z2) ∈ R2, temos

⟨u + v , w⟩ = ⟨(x1, x2) + (y1, y2), (z1, z2)⟩
= ⟨(x1 + y1, x2 + y2), (z1, z2)⟩
= (x1 + y1)z1 + (x2 + y2)z2

= (x1z1 + x2z2) + (y1z1 + y2z2)
= ⟨(x1, x2), (z1, z2)⟩ + ⟨(y1, y2), (z1, z2)⟩
= ⟨u, w⟩ + ⟨v , w⟩

3) Para todo u = (x1, x2), v = (y1, y2) ∈ R2 e α ∈ R, temos

⟨αu, v⟩ = ⟨α(x1, x2), (y1, y2)⟩ = ⟨(αx1, αx2), (y1, y2)⟩
= (αx1)y1 + (αx2)y2 = α(x1y1 + x2y2)
= α⟨(x1, x2), (y1, y2)⟩
= α⟨u, v⟩
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4) Para todo u = (x1, x2) ∈ R2, temos
⟨u, u⟩ = ⟨(x1, x2), (x1, x2)⟩ = x1

2 + x2
2

Como xj
2 ≥ 0, para todo 1 ≤ j ≤ 2, segue que ⟨u, u⟩ ≥ 0.

Suponha que u ̸= 0, ou seja, que alguma de suas componentes é não
nula, digamos x1 ̸= 0. Então,

⟨u, u⟩ = 0 ⇐⇒ x1
2 + x2

2 = 0

⇐⇒
(x1

x1

)2
+
(x2

x1

)2
= 0

⇐⇒ 1 +
(x2

x1

)2
= 0

⇐⇒
(x2

x1

)2
= −1

Contradição, pois o primeiro membro da última igualdade é maior que
ou igual a zero enquanto o segundo membro é negativo. Portanto,

⟨u, u⟩ = 0 ⇐⇒ u = 0
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De forma análoga, a função

⟨u, v⟩ =
3∑

i=1
xiyi = x1y1 + x2y2 + x3y3

com u = (x1, x2, x3), v = (y1, y2, y3) ∈ R3, define um produto interno sobre
R3. Este é chamado de produto interno canônico sobre R3.

Generalizando, a função

⟨u, v⟩ =
n∑

i=1
xiyi = x1y1 + · · · + xnyn

com u = (x1, . . . , xn), v = (y1, . . . , yn) ∈ Rn, define um produto interno
sobre Rn. Este é chamado de produto interno canônico sobre Rn.
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O produto interno canônico sobre Rn pode ser escrito como produto matri-
cial da seguinte forma:

⟨u, v⟩ = v tu =
[

y1 . . . yn
]

·

 x1
...

xn


*Identificamos uma matriz de ordem 1 sobre R com o seu único elemento.

Exemplo
Sejam α1, . . . , αn ∈ R∗

+, chamados de pesos, e u = (x1, . . . , xn), v =
(y1, . . . , yn) ∈ Rn, a função

⟨u, v⟩ =
n∑

i=1
αixiyi = α1x1y1 + · · · + αnxnyn

define um produto interno sobre Rn. Este é chamado de produto interno
ponderado com pesos α1, . . . , αn.
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Exemplo
Sejam u = (x1, x2), v = (y1, y2) ∈ R2, verifique se a função

⟨u, v⟩ = 2x1y1 − 5x2y2

define um produto interno sobre R2.

Exemplo
Sejam u = (x1, x2), v = (y1, y2) ∈ R2, mostre que a função

⟨u, v⟩ = x1y1 − x1y2 − x2y1 + 3x2y2

define um produto interno sobre R2.

Apresentamos a seguir produtos internos definidos sobre espaços vetoriais
diferentes de Rn.
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Exemplo
Sejam A = [aij ], B = [bij ] ∈ M2(R). A função

⟨A, B⟩ =
2∑

i ,j=1
aijbij = a11b11 + a12b12 + a21b21 + a22b22

define um produto interno sobre M2(R). Este é chamado de produto
interno canônico sobre M2(R).

De forma geral, dados A = [aij ], B = [bij ] ∈ Mm×n(R), a função

⟨A, B⟩ =
m∑

i=1

n∑
j=1

aijbij = a11b11 + · · · + amnbmn

define um produto interno sobre Mm×n(R). Este é chamado de produto
interno canônico sobre Mm×n(R).
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Exemplo
Sejam p, q ∈ Pn(R), onde p(x) = a0 + a1x + · · · + anxn e q(x) = b0 +
b1x + · · · + bnxn, a função

⟨p, q⟩ =
n∑

i=0
aibi = a0b0 + · · · + anbn

define um produto interno sobre Pn(R). Este é chamado de produto in-
terno canônico sobre Pn(R).

Exemplo
Sejam f , g ∈ C([a, b],R), a função

⟨f , g⟩ =
∫ b

a
f (x)g(x) dx

define um produto interno sobre C([a, b],R). Este é chamado de produto
interno canônico sobre C([a, b],R).
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Da definição de produto interno, decorrem as seguintes propriedades.

Proposição

Sejam V um espaço euclidiano, u, v , w ∈ V e β ∈ R. Então,
1 ⟨0, v⟩ = ⟨v , 0⟩ = 0;
2 ⟨u, v + w⟩ = ⟨u, v⟩ + ⟨u, w⟩;
3 ⟨u, βv⟩ = β⟨u, v⟩.

Da definição de produto interno e da Proposição obtemos a bilinearidade:

⟨u + αv , w + βz⟩ = ⟨u, w⟩ + β⟨u, z⟩ + α⟨v , w⟩ + αβ⟨v , z⟩

A bilinearidade pode ser estendida a uma quantidade finita de parcelas,
conforme resultado a seguir.
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Proposição
Sejam V um espaço euclidiano, ui , vj ∈ V e αi , βj ∈ R, com 1 ≤ i ≤ m e
1 ≤ j ≤ n. Então,

1

〈 m∑
i=1

αiui , v
〉

=
m∑

i=1
αi⟨ui , v⟩;

2

〈
u,

n∑
j=1

βjvj

〉
=

n∑
j=1

βj⟨u, vj⟩;

3

〈 m∑
i=1

αiui ,
n∑

j=1
βjvj

〉
=

m∑
i=1

n∑
j=1

αiβj⟨ui , vj⟩.
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Definição
Seja V um espaço euclidiano. Dado um vetor v ∈ V , chama-se norma de
v , e denota-se por ∥v∥, o número real definido por

∥v∥ =
√

⟨v , v⟩

A norma está bem definida tendo em vista que ⟨v , v⟩ ≥ 0, ∀ v ∈ V . Dize-
mos que a norma definida como ∥v∥ =

√
⟨v , v⟩ é proveniente do produto

interno.

Exemplo
Seja V = Rn com produto interno canônico. A norma é dada por

∥v∥ =
√

x12 + x22 + · · · + xn2 , v = (x1, x2, . . . , xn) ∈ Rn

Esta é chamada norma euclidiana.
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v = (x , y)

x

y

∥v∥ =
√ x2 + y2

v = (x , y , z)

x

y

z
∥v∥ =

√ x2 + y2 + z2

Figura: Norma Euclidiana em R2 e R3
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Exemplo
Seja V = Mm×n(R) com produto interno canônico. A norma é dada por

∥A∥ =
√

a112 + a122 + · · · + amn2 , A = [aij ] ∈ Mm×n(R)

Esta é chamada norma de Frobenius.

Exemplo
Seja V = Pn(R) com produto interno canônico. A norma é dada por

∥p∥ =
√

a02 + a12 + · · · + an2

onde p(x) = a0 + a1x + · · · + anxn ∈ Pn(R).
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Exemplo
Seja V = C([a, b],R) com o produto interno canônico. A norma é dada
por

∥f ∥ =
(∫ b

a
[f (x)]2 dx

) 1
2

, f ∈ C([a, b],R)

Se V é um espaço com produto interno, v ∈ V e ∥v∥ = 1, isto é ⟨v , v⟩ = 1,
então v é dito um vetor unitário. Dizemos também, neste caso, que v está
normalizado. Todo vetor não nulo v ∈ V pode ser normalizado, sendo
suficiente para isto tomar o vetor v

∥v∥
, chamado versor de v . De fato,

〈 v
∥v∥

,
v

∥v∥

〉
= 1

∥v∥2 · ⟨v , v⟩ = 1
∥v∥2 · ∥v∥2 = 1
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Exemplo
Considere o espaço euclidiano R3.
a) Calcule a norma do vetor u = (4, −2, 2) em relação ao produto interno

canônico;
b) Calcule a norma do vetor u = (4, −2, 2) em relação ao produto interno

dado por
⟨u, v⟩ = x1y1 + 2x2y2 + 3x3y3

onde u = (x1, x2, x3), v = (y1, y2, y3) ∈ R3.

Exemplo
Considere o espaço euclidiano R3 com produto interno canônico. Calcule a
norma de cada vetor e, caso o vetor não seja unitário, o normalize.

a) v = (−1, 4, 2) b) v =
(1

3 , −2
3 ,

2
3

)
c) v = (2, 1, −3)
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Exemplo
Dado o espaço euclidiano P2(R), considere o produto interno definido por

⟨p, q⟩ =
∫ 1

0
p(x)q(x) dx , ∀ p, q ∈ P2(R)

Determine o valor de a ∈ R para que ∥p∥ = 2
√

2
15, sendo p(x) = x2 − ax .

Exemplo
Considere o espaço euclidiano R2 com o produto interno definido por

⟨u, v⟩ = 3x1y1 + x2y2

onde u = (x1, x2) e v = (y1, y2). Em relação a esse produto interno,
determine um vetor v tal que

∥v∥ = 4 , ⟨u, v⟩ = 10 e u = (1, −2)
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A norma proveniente do produto interno goza das seguintes propriedades.

Proposição
Seja V um espaço euclidiano. Para quaisquer v ∈ V e α ∈ R, tem-se:

1 ∥v∥ ≥ 0, e ∥v∥ = 0 se, e somente, v = 0;
2 ∥αv∥ = |α|∥v∥.

A propriedade é uma das mais importantes inequações da matemática.

Teorema (Desigualdade de Cauchy-Bunyakovskii-Schwarz)
Seja V um espaço euclidiano, então para todo u, v ∈ V tem-se

|⟨u, v⟩| ≤ ∥u∥∥v∥

A igualdade vale se, e somente se, {u, v} é linearmente dependente.
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Exemplo
Sejam a, b, c ∈ R∗

+, mostre que

(a + b + c)
(1

a + 1
b + 1

c

)
≥ 9

Sejam u = (
√

a,
√

b,
√

c), v =
( 1√

a ,
1√
b

,
1√
c

)
∈ R3, da desigualdade

CBS tem-se que∣∣∣∣〈(
√

a,
√

b,
√

c),
(

1√
a

,
1√
b

,
1√
c

)〉∣∣∣∣ ≤
∥∥(

√
a,

√
b,

√
c)
∥∥∥∥∥∥( 1√

a
,

1√
b

,
1√
c

)∥∥∥∥∣∣∣∣√a · 1√
a

+
√

b · 1√
b

+
√

c · 1√
c

∣∣∣∣ ≤ (a + b + c)
1
2 ·
(1

a + 1
b + 1

c

) 1
2

|3| ≤ (a + b + c)
1
2 ·
(1

a + 1
b + 1

c

) 1
2

9 ≤ (a + b + c)
(1

a + 1
b + 1

c

)
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Corolário (Desigualdade Triangular)
Seja V um espaço euclidiano, então para todo u, v ∈ V tem-se

∥u + v∥ ≤ ∥u∥ + ∥v∥

A igualdade ocorre se, e somente se, um dos vetores é múltiplo não-negativo
do outro.

u

v u + v

∥u∥

∥v∥∥u + v∥

Figura: Desigualdade Triangular em R2 e R3
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Definição
Seja V um espaço euclidiano. Dados u, v ∈ V , chama-se distância entre
u e v , e denota-se por d(u, v), o número real definido por

d(u, v) = ∥u − v∥

Exemplo
Considere o espaço euclidiano R2 com o produto interno canônico. Calcule
a distância entre os vetores u = (3, 1) e v = (−1, 2) do R2.
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Ângulo entre Dois Vetores e
Ortogonalidade
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Sejam V um espaço euclidiano e u, v ∈ V não nulos. Da desigualdade de
CBS, segue que

|⟨u, v⟩| ≤ ∥u∥∥v∥ ⇐⇒ −1 ≤ ⟨u, v⟩
∥u∥∥v∥

≤ 1

Como a função f (θ) = cos θ é bijetora do intervalo [0, π] em [−1, 1], existe
um único θ ∈ [0, π] tal que

cos θ = ⟨u, v⟩
∥u∥∥v∥

Definição
Sejam V um espaço euclidiano e u, v ∈ V não nulos. O ângulo entre u e
v é o número real θ ∈ [0, π] tal que

cos θ = ⟨u, v⟩
∥u∥∥v∥
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Exemplo
Dado o espaço euclidiano R3 com produto interno canônico, sejam u =
(1, 2, −1), v = (3, −1, 0) ∈ R3. Determine o ângulo entre os vetores u e v .

Solução
Temos que

⟨u, v⟩ = 1 · 3 + 2 · (−1) + (−1) · 0 = 1

∥u∥ =
√

12 + 22 + (−1)2 =
√

6

∥v∥ =
√

32 + (−1)2 + 02 =
√

10

Donde obtemos, cos θ = 1√
6 ·

√
10

= 1
2
√

15
. Portanto,

θ = arccos
( 1

2
√

15

)
≈ 1, 441 rad
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Exemplo
Seja V = C([0, 1],R) com produto interno canônico. Determine o ângulo
entre as funções f (x) = x3 − x e g(x) = x2 − x .

Definição
Seja V um espaço com produto interno.

1 Dizemos que u, v ∈ V são vetores ortogonais, e denotamos por u ⊥
v , se ⟨u, v⟩ = 0.

2 Dizemos que A = {v1, v2, . . . , vm} ⊂ V é um conjunto ortogonal se

⟨vi , vj⟩ = 0, ∀ i ̸= j .

3 Dizemos que A = {v1, v2, . . . , vm} ⊂ V é um conjunto ortonormal se

⟨vi , vj⟩ = δij onde δij =
{

0 , se i ̸= j
1 , se i = j .
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Observemos que

⟨u, v⟩ = 0 ⇐⇒ cos θ = 0 ⇐⇒ θ = π

2 rad, θ ∈ [0, π]

mostrando a compatibilidade entre os conceitos de ângulo e ortogonalidade.

Definição
Seja V um espaço com produto interno.

1 Se o conjunto ortogonal B = {v1, v2, . . . , vn} é uma base de V dizemos
que B é uma base ortogonal.

2 Se o conjunto ortonormal B = {v1, v2, . . . , vn} é uma base de V dize-
mos que B é uma base ortonormal.

3 Se V é um espaço euclidiano e o conjunto ortonormal B =
{v1, v2, . . . , vn} é uma base de V , dizemos também que B é um sis-
tema cartesiano para V .
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Exemplo
Considere o espaço euclidiano R2 e os vetores u = (1, 1), v = (−1, 1) ∈ R2.

a) Verifique se os vetores u e v são ortogonais relativamente ao produto
interno canônico.

b) Verifique se os vetores u e v são ortogonais relativamente ao produto
interno definido por

⟨u, v⟩ = 2x1y1 + 3x2y2 onde u = (x1, x2), v = (y1, y2) ∈ R2

Solução

a) Temos que ⟨u, v⟩ = 1 · (−1) + 1 · 1 = 0. Portanto, u ⊥ v.
b) Temos que ⟨u, v⟩ = 2 · 1 · (−1) + 3 · 1 · 1 = 1. Portanto, u ̸⊥ v.

Joab Silva (IFPB) Álgebra Linear I 31 / 54
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Exemplo
O conjunto B = {v1, v2, v3}, onde v1 = (1, −1, 0), v2 = (1, 1, 1) e v3 =
(−1, −1, 2), é uma base ortogonal de R3. De fato,

⟨v1, v2⟩ = 1 · 1 + (−1) · 1 + 0 · 1 = 0
⟨v1, v3⟩ = 1 · (−1) + (−1) · (−1) + 0 · 2 = 0
⟨v2, v3⟩ = 1 · (−1) + 1 · (−1) + 1 · 2 = 0

Mas,

∥v1∥ =
√

12 + (−1)2 + 02 =
√

2

∥v2∥ =
√

12 + 12 + 12 =
√

3

∥v3∥ =
√

(−1)2 + (−1)2 + 22 =
√

6

donde segue que B não é ortonormal.
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Exemplo (continuação)
Agora, podemos converter um conjunto ortogonal de vetores não nulos em
um conjunto ortonormal, bastando para tanto normalizar cada vetor não
unitário de B.

Assim, segue que

B′ =
{( 1√

2
, − 1√

2
, 0
)

,

( 1√
3

,
1√
3

,
1√
3

)
,

(
− 1√

6
, − 1√

6
,

2√
6

)}
é ortonormal.

Teorema (Teorema de Pitágoras)
Sejam V um espaço euclidiano e u, v ∈ V . Então, u ⊥ v se, e somente se,

∥u + v∥2 = ∥u∥2 + ∥v∥2
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Proposição
Seja V um espaço com produto interno. Todo conjunto ortogonal S ⊂ V
de vetores não nulos é linearmente independente.

Proposição
Sejam V um espaço com produto interno e A = {v1, v2, . . . , vm} ⊂ V
um subconjunto ortogonal formado por vetores não nulos. Se v ∈
[v1, v2, . . . , vm], então

v =
m∑

i=1

⟨v , vi⟩
∥vi∥2 · vi

Assim, pela Proposição, se v é uma combinação linear dos vetores v1, . . . , vm,
ortogonais e não nulos, então v se escreve como

v = ⟨v , v1⟩
∥v1∥2 · v1 + ⟨v , v2⟩

∥v2∥2 · v2 + · · · + ⟨v , vm⟩
∥vm∥2 · vm
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Definição
Sejam V um espaço com produto interno, B = {v1, v2, . . . , vn} uma base
ortogonal de V e v ∈ V .

1 O lado direito da expressão v =
m∑

i=1

⟨v , vi⟩
∥vi∥2 · vi é chamado expansão

de Fourier de v em relação à base B.

2 Os escalares αi = ⟨v , vi⟩
∥vi∥2 , coordenadas do vetor v em relação à base

B, são chamados de coeficientes de Fourier de v em relação à vi .

Definição
A projeção ortogonal de u sobre v , ou ao longo de v , é o vetor definido
por

projv u = ⟨u, v⟩
∥v∥2 · v
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Produto Interno Ângulo entre Dois Vetores e Ortogonalidade

vprojv u

u

Figura: Projeção Ortogonal de u sobre v .

Exemplo
Considere R2 com produto interno canônico e B = {(1, 1), (−1, 1)} uma
base ortogonal de R2. Determine [v ]B onde v = (2, 3).

Ilustramos graficamente na Figura 4 o exemplo anterior.
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x

y v = 5
2v1 + 1

2v2

v1

5
2v1

v2
1
2v2

Figura: Coordenadas de v = (2, 3) ∈ R2 em relação à base B = {(1, 1), (−1, 1)}.

Exemplo
Dado o espaço euclidiano R3 com produto interno canônico, determine
a expansão de Fourier do vetor v = (2, 1, −3) em relação à base B =
{(1, −1, 2), (2, 0, −1), (1, 5, 2)}.
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Processo de Ortogonalização de
Gram-Schmidt
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O espaço vetorial Rn possui uma base ortonormal, a base canônica, o que
certamente sugere os seguintes questionamentos: todo espaço vetorial de
dimensão finita possui uma base ortogonal? Em caso afirmativo, como
obtê-la?
Para responder aos questionamentos apresentamos o resultado a seguir, o
qual trás em sua demostração o processo de construção da base ortogonal
conhecido como Processo de Ortogonalização de Gram-Schmidt. Normali-
zando os vetores da base ortogonal obtemos a base ortonormal procurada.

Teorema
Todo espaço vetorial de dimensão finita n ≥ 1 com produto interno possui
uma base ortonormal.

Demonstração.
Seja V um espaço com produto interno e B = {v1, v2, . . . , vn} uma base de
V . Objetivamos construir uma base B′ = {w1, w2, . . . , wn} ortogonal de V
a partir de B.
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Demonstração (Cont.)
Inicialmente, tomemos w1 como qualquer um dos vetores de B, digamos
w1 = v1. Determinemos um escalar α tal que v2 = w2 + αw1, e mais, que
w1 ⊥ w2.

[w1]

w2

w1 = v1 αw1

v2

Da exigência w1 ⊥ w2, obtemos

⟨w2, w1⟩ = 0 ⇐⇒ ⟨v2 − αw1, w1⟩ = 0 ⇐⇒
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Demonstração (Cont.)

⟨v2, w1⟩ − α⟨w1, w1⟩ = 0 ⇐⇒ α = ⟨v2, w1⟩
∥w1∥2

Logo, w2 = v2 − ⟨v2, w1⟩
∥w1∥2 ·w1. Como v1 e v2 são linearmente independentes,

temos que w2 ̸= 0 e, claramente, [w1, w2] = [v1, v2], pois w1 e w2 são
combinações lineares de v1 e v2. Com isso, os vetores de [w1, w2] são da
forma

α1w1 + α2w2

para certos α1, α2 ∈ K.

Determinemos agora α1 e α2 tais que v3 = w3 + α2w2 + α1w1, e mais, que
w3 ⊥ w1 e w3 ⊥ w2.
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Demonstração (Cont.)

w1 = v1
α1w1

w2 α2w2

w3

v3

[w1, w2]

Da exigência w3 ⊥ w1, obtemos

⟨w3, w1⟩ = 0 ⇐⇒ ⟨v3 − α2w2 − α1w1, w1⟩ = 0 ⇐⇒
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Demonstração (Cont.)

⟨v3, w1⟩ − α2⟨w2, w1⟩ − α1⟨w1, w1⟩ = 0 ⇐⇒ α1 = ⟨v3, w1⟩
∥w1∥2

pois w2 ⊥ w1. De forma análoga, da exigência w3 ⊥ w2, obtemos

α2 = ⟨v3, w2⟩
∥w2∥2

Logo, w3 = v3−⟨v3, w1⟩
∥w1∥2 ·w1−⟨v3, w2⟩

∥w2∥2 ·w2. Como v1, v2 e v3 são linearmente

independentes, temos que w3 ̸= 0 e, claramente, [w1, w2, w3] = [v1, v2, v3],
pois w1, w2 e w3 são combinações lineares de v1, v2 e v2. Com isso, os
vetores de [w1, w2, w3] são da forma

α1w1 + α2w2 + α3w3

para certos α1, α2, α3 ∈ K.
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Demonstração (Cont.)
Continuado este processo, obtemos que

wk+1 = vk+1 −
k∑

j=1

⟨vk+1, wj⟩
∥wj∥2 · wj

é ortogonal a cada um dos vetores w1, w2, . . . , wk . E, como v1, v2, . . . , vk+1
são linearmente independentes, temos que wk+1 ̸= 0, donde segue que

[w1, w2, . . . , wk+1] = [v1, v2, . . . , vk+1]

pois w1, w2, . . . , wk+1 são combinações lineares de v1, v2, . . . , vk+1.
Agora, por Proposição, este conjunto é linearmente independente. Portanto,
B′ = {w1, w2, . . . , wn} é uma base ortogonal.
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Demonstração (Cont.)
Finalmente, tomando

wi
′ = wi

∥wi∥
, ∀ 1 ≤ i ≤ n

obtemos uma base ortonormal B′′ = {w1
′, w2

′, . . . , wn
′}.

Algoritmo de Gram-Schmidt: Seja V um espaço com produto
interno e B = {v1, v2, . . . , vn}, uma base arbitrária de V . A
Sequência de Gram-Schmidt definida por

w1 = v1

wk = vk −
k−1∑
j=1

⟨vk , wj⟩
∥wj∥2 wj para k = 2, 3, . . . , n

é uma base ortogonal de V .
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Exemplo
Considere o espaço euclidiano R2 com o produto interno canônico. Deter-
mine uma base ortogonal de R2 a partir da base

B = {(3, 1), (−2, 2)}

Exemplo
Dado o espaço euclidiano R3 com o produto interno canônico, determine
uma base ortonormal de R3 a partir de

B = {(1, 0, 0), (0, −1, 2), (2, −3, −1)}
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Complemento Ortogonal
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Definição
Sejam V um espaço com produto interno e S ⊂ V um subconjunto não
vazio de V . O complemento ortogonal de S é definido por

S⊥ = {v ∈ V | ⟨v , u⟩ = 0, ∀ u ∈ S}

Dado S ⊂ V , temos que

⟨0, u⟩ = 0 , ∀ u ∈ S

Logo, 0 ∈ S⊥ e, portanto, S⊥ é não vazio. Sejam v1, v2 ∈ S⊥ e α ∈ K,
para todo u ∈ S temos

⟨v1 + αv2, u⟩ = ⟨v1, u⟩ + α⟨v2, u⟩ = 0 + α · 0 = 0

Consequentemente, v1 + αv2 ∈ S⊥.
Da discussão anterior segue que S⊥ é um subespaço de V e, por isso, é
também chamado de subespaço ortogonal.
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Proposição
Sejam V um espaço euclidiano e W = [w1, . . . , wk ] um subespaço de V .
Então, v ∈ W ⊥ se, somente se, ⟨v , wi⟩ = 0, ∀ 1 ≤ i ≤ k.

Exemplo
Sejam V = R2, com produto interno canônico, e W = {(x , y) ∈ R2| x −
y = 0} um subespaço de V . Determine W ⊥.

Inicialmente, observemos que W = {(x , x)| x ∈ R} = [(1, 1)], donde
obtemos que B = {(1, 1)} é uma base de W . Agora, pela Proposição,

v = (x , y) ∈ W ⊥ ⇐⇒ ⟨(x , y), (1, 1)⟩ = 0 ⇐⇒ x + y = 0

Portanto,

W ⊥ = {(x , y) ∈ R2| x + y = 0} = {(−y , y)| y ∈ R} = [(−1, 1)]
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x

y

−4 −3 −2 −1 1 2 3 4

1

2

3W ⊥ W

Figura: Complemento Ortogonal de W = {(x , y) ∈ R2| x − y = 0}.

Exemplo
Considere o espaço euclidiano R3 com o produto interno canônico. Deter-
mine o complemento ortogonal do seguinte subespaço de R3:

W = [(1, −1, 1), (2, 1, 3), (0, −3, −1)]
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Teorema (Teorema da Decomposição Ortogonal)
Seja V um espaço com produto interno de dimensão finita n ≥ 1 e W um
subespaço de V , então

V = W ⊕ W ⊥

Além disso, a norma do vetor v ∈ V é dada pela fórmula de Pitágoras

∥v∥2 = ∥w1∥2 + ∥w2∥2

onde v = w1 + w2, com w1 ∈ W e w2 ∈ W ⊥.

Em outras palavras, o Teorema diz que se B = {v1, v2, . . . , vm} é uma base
ortonormal de um subespaço W de um espaço com produto interno V de
dimensão finita, então todo vetor v ∈ V se decompõe, de maneira única,
como a soma de duas parcelas, uma de W e uma de W ⊥, ortogonais entre
si.

v = ⟨v , v1⟩v1 + ⟨v , v2⟩v2 + · · · + ⟨v , vm⟩vm︸ ︷︷ ︸
∈ W

+ w2︸︷︷︸
∈ W ⊥
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Exemplo
Considere o espaço euclidiano R3 com produto interno canônico e seja

W =
{

(x , y , z) ∈ R3| x + 2y − z = 0
}

um subespaço de R3. Dado o vetor v = (1, 3, 2) ∈ R3, determine sua
decomposição ortogonal v = w1 + w2, com w1 ∈ W e w2 ∈ W ⊥.

Para a solução do exemplo:
Determine uma base B de W ;
Aplique o Processo de Ortoganalização de Gram-Schmidt à base B
determinando uma base B′;
Normalize B′ obtendo uma base ortonormal B′′

Aplique o Teorema da Decomposição Ortogonal.
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Teremos a seguinte decomposição ortogonal:

(1, 3, 2) =
(1

6 ,
4
3 ,

17
6

)
︸ ︷︷ ︸

∈ W

+
(5

6 ,
5
3 , −5

6

)
︸ ︷︷ ︸

∈ W ⊥

z

x
y

w1

w2

v

W ⊥

W

Figura: Decomposição Ortogonal do Vetor v = (1, 3, 2).
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Bom Trabalho!
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